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O. Introduction




Nice to meet you

Olf Koekoek

Lead CXO consultant

» Background in research
» 15+ years active in online
» Work at ClickValue
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Clients

We're optimizing digital touchpoints of the following brands
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1 . How we define CXO I



EXAMPLE

Making things better for your users
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BUSINESS VALUE

2. Why you want to
research & validate




If you don't validate?

No idea...
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If you add some validation?

Insights in impact of changes

All

Validation

Some

None

______________________________________________________________________________________________

Some

Research

All
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If you only add research?

No idea...
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None
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Some

Research
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If you combine research and validation

Maximise winning changes

All
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..........................................................................................................................
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Research

All
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Data driven decision making process
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Validation: How AB testing works

3. What you probably
already know




EXAMPLE

What AB testing looks like
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EXAMPLE

What AB testing looks like
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ALWAYS

Calculate if you can run an experiment

Bayesian Test Potential Calculator

1 Test settings

2. Test Potential

settin

Risk profile:

Standard (90%)

Traffic Check Start Date

Traffic Check End Date!

Maximum Runtime (full w eeks)

10/03/2024 H
clickvalue
5

MDE Origin

Order Values:

Goal-specific Get optimized
Sitewide AOV €100,00

Order per converting visitor

Goal-specific Value

Home

Current Situation on Website

Calculate VLI Visitors with
Visitors

Revenue (micro

Unique
Impact? (Wi conversi
visitors)

1.000.000 120.000 €1.629.548

Website total

1.100.000 120.000 €0

[

864.500 200.000 €846.172

PDP

600.000 250.000 €0

PDP

600.000 200.000 , €785.731

Cart

500.000 300.000 3 €0

Cart

80.000 10,000 €215.860

Checkout

34,000 21.354 €137.362
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EXAMPLE

What AB testing looks like
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EXAMPLE

What does CXO look like in real life?
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BUSINESS VALUE

4. Alternatives to
A/B testing




Two different situations

o
A

You DON'T have the traffic for AB testing
You want to validate

For alternatives

o
B

You DO have the traffic for AB testing
You want to validate faster / more
Your idea requires a lot of effort to build
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What is a User test?

Data Collection

We ask paid respondents about their experience of the
proposed change. Key metric types:

Opinions: for example, the ease of use, the clarity
of information, the brand fit or how a design makes
them feel.

Intention: for example: the likeliness of them

buying a product given a specific version of the
website or app.

Always taking into account:

User characteristics: such as their age, gender,
geographical location or other factors of influence.
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What does a user test look like
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VALIDATION

User Testing

—_—

Restructured menu items
W—— based on research
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Basic navigation

structure \/




Our approach:

Unmoderated user test with
a tree test and follow-up
questions for both variants

~

VALIDATION

User Testing

Basic navigation structure Restructured menu items

NLW ARRIVALS
SHOP BY

EXCLUSIVELY WITH US

SHOLS

CLOTHING

ACCESSORIES

WOMEN'S MOMENTS

—_—

Get to know how real
people think, feel and
experience the menu

)

Understand what people
expect of the navigation



—_— VALIDATION

User Testing
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VALIDATION

User Testing

Solution:

S — TEe © We thought ‘progressive
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VALIDATION

User Testing

Filter containers

Solution:

But it took us several
attempts to get it right
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VALIDATION

User Testing

1. Selecteer afvalsoort

Solution:

Offerte overzicht

- But it took us several
- e attempts to get it right
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What If you can’t use AB testing,

but you still want to understand

the impact of a change on your
performance metrics?

Causal Impact analysis

(A pre-post without
all the downsides)
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— What is a Causal Impact analysis?

Data Collection

We collect data from the periods before and after the change.
For each day in these periods, we use:

« Key Metric: for example, the number conversions or the
Average Order Value for each day.

« User/session characteristics: such as their device type
or the country from which they are visiting, source of the
traffic, type of the traffic, campaign
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= What is a Causal Impact analysis?
KPIl Prediction

«  We build a Bayesian timeseries model that Change made
predicts how the metric develops over time.

Observed

In short: we estimate how the metric
would have performed if the change had o
not occurred.

Causal Effect

Clicks

- Very important: we account for fluctuations
The prediction accounts for time-based
fluctuations, like higher weekend sales or
campaigns and adjusts for user characteristics 5 10 15 20
linked to the metric. Time

« For instance, if German visitors convert more than
French visitors and their number of visits increase
after a change, the model ensures this doesn't
falsely inflate the results. It learns these patterns

. to isolate the true impact of the change.



EXAMPLE

B What does causal impact analysis look
like
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VALIDATION - CAUSAL IMPACT ANALYSIS (PRE/POST ANALYSIS)

Validating a redesign

Pre: before redesign Post: after redesign

—* Defines actual impact

~

Takes into account traffic
changes and seasonality

Takes away insecurities of its
impact

*fictitious numbers



VALIDATION - CAUSAL IMPACT ANALYSIS (PRE/POST ANALYSIS)

Pre: before redesign

Concertgebouworkest

speelt Bruckner en
Messiaen

Validating a redesign

Post: after redesign

zo 19 jan 2025
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VALIDATION - CAUSAL IMPACT ANALYSIS (PRE/POST ANALYSIS)

Validating multiple changes

Pre: before redesign Post: after redesign

770 liter = 770 liter

36 37 7 cm :
136 x 137 x77 ¢ 136 x 137 x 77 em

Restafval

1100 liter 1100 liter 1 1100 liter

129x 137 x 108 em (metaal) (metaal)

129x 137 x 108 cm

22 & 2
122 x 167 x 92 cm 122 x 167 x 92 em

*fictitious numbers

Overzicht




Any questions?

Olf Koekoek
olf@clickvalue.nl
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